
A Bayesian Analysis of the Variate Strength of PLA 

 

Introduction 

Material selection is a key component to the 

design of any product. Engineers often select 

materials based on a few key characteristics. 

These characteristics vary by product, but often 

include items such as cost, ease of manufacture, 

weight, strength, and sometimes even aesthetics. 

In this project we describe a process for 

characterizing the strength of a couple of 

samples of polylactic acid (PLA). PLA is a 

widely popular material for cheap and rapid 

prototyping when used as filament for 3D 

printing. 

As a polymer, PLA does not have a single 

characteristic strength. Instead, the strength of 

PLA follows a distribution of values based on 

the polymer chain orientations, which are 

randomly determined. This leads to a 

conundrum for engineers, who have many 

equations and formulas for part design that rely 

on material strength as a key known factor. To 

solve this conundrum, it is standard to use an 

“expected” or “probable” strength for the 

material in question. We present a Bayesian 

model to predict such a strength for Overture 

PLA and provide several estimates that could be 

used depending upon the specific context of the 

design problem. 

 

Methods 

Data Collection 

The breaking strength (kN) of two groups of 

3D-printed PLA links was measured using a 

50kN Instron tensile tester. We followed 

standard operating procedure for a tensile test - 

slow rate motion (5mm/min) that provided a 

continual application of force until the link 

broke. The maximum force applied just prior to 

failure was recorded for a total of 21 links from 

two groups. The groups visually vary in color, 

one white the other gray, and potential 

mechanical variation between the two groups 

could be due to being different batches of PLA. 

The link design was typical of tensile test 

specimens, with wide ends and a narrow center 

to ensure consistent fracture in the neck. 

 

Model Development 

We are willing to assume that the strength of 

the links follows a Weibull distribution with 

shape 𝛼 and scale 𝛽. We chose this because the 

Weibull is a flexible, skewed distribution. To 

estimate these parameters, we use our 

knowledge of Overture PLA and our desired 

certainty for its strength. Our prior knowledge 

and the design of our specific links led us to be 

99% sure that the strength of each link would be 

between 1.62 and 3.00 kN. Our beliefs about the 

distribution of 𝛼 are derived from the published 

material properties of this Overture PLA, 

namely that the tensile strength is 46.6 MPa. 

Using this strength, we calculate an upper and 

lower bound for the strength using the range of 

possible cross-sectional area values of the link. 

These values range from 0.1 in.2 for 100% infill 

to 0.054 in.2 for 0% infill. The entire range of 

infill values is present throughout the link due to 

the specific infill pattern. Using these values as 

the upper and lower bounds of a 99% credible 

interval, we calculate the hyperparameters of the 

prior on 𝛼. For the scale parameter 𝛽, we choose 

a Gamma prior that is relatively flat, as this 

distribution highly favors large values. This 

results in the following model: 

 

f(y | 𝛼, 𝛽) ~ Weibull(𝛼, 𝛽) 

𝜋(𝛼) ~ Weibull(2.72, 11.35) 

𝜋(𝛽) ~ Gamma(0.001, 1) 

 

Since our data appears to fall into two groups 

(white links and gray links) that indicate the 

product batch in which they were manufactured, 



we first determine if the strength differs by 

group. Therefore, we developed two models to 

test whether either of the parameters of the 

distribution of strength differs between the white 

and the gray links. 

 

𝐻0: The distributions of link strengths share a 

common value of  𝛼 and 𝛽 regardless of 

filament color 

 

𝐻1: The distributions of link strengths have 

unique values of 𝛼 and 𝛽 based on the 

filament color 

 

Due to the computational complexity of these 

models, we implemented an MCMC algorithm 

using Stan to generate a sample from the 

posterior distribution of the parameters under 

each model. Under the initial assumption that 

each model was equally likely, they were 

compared using bridge sampling to determine 

the probability of each model given the data.  
 

Results & Discussion 

Model Comparison 

We are 99.97% sure that the link strengths 

follow different distributions based on the 

filament color. Using this model, we now 

compute useful values for estimating the 

strengths of both groups, though our final report 

would only include the stronger group because 

that is the batch an engineer would pursue for 

use in a design. 

 

Application 

Different product design intentions will lead 

to various levels of requisite certainty. We report 

a lower bound on the predicted strength for 

several different levels of surety. 

 

Confidence 

White Link 

Strength (kN) 

Gray Link 

Strength (kN) 

99.99% 0.9512979 1.38 

99% 1.5029528 1.86 

95% 1.7387802 2.09 

90% 1.8461761 2.192314 

 

Interpretation 

Now that we have a series of predicted 

values, we must choose which one to use in the 

design equations. The safe road is to always go 

with more surety; however, the question then 

becomes how much more surety is desired? The 

greater the certainty, the smaller the predicted 

value as it is always possible that a particular 

specimen will fail at functionally zero force due 

to internal inconsistencies and flaws. There are a 

couple of places to look for guidance in this 

decision: industry-specific standards and similar 

cases within fatigue design. 

First, some industries have set standards for 

the certainty used in their designs. An example 

of this is the aerospace industry, where all 

designs must have a 99.99% certainty. However, 

very few industries have such standards. 

Second, an engineer may look towards a 

similar problem faced with designing around 

fatigue life. The fatigue life of metals is also 

stochastic, with some metals having much more 

variance than others. While there are no 

industry-specific standards for this, there are 

generally accepted guidelines and a great deal of 

engineering intuition built up over the decades 

and centuries of experience. A commonly 

accepted value is 95% certainty for non-critical 

parts and 99% certainty for critical components. 

Therefore, the most likely values that we 

would report to an engineer inquiring on the 



strength of PLA are the values for which we are 

95% and 99% certain, which are 2.09 kN and 

1.86 kN, respectively. 

 

Limitations & Future Work 

The largest limitation to this problem is the 

amount of data collected. We had 21 total 

samples, split between two groups such that the 

smaller had only 9 samples. This is enough data 

to give us a general idea of the strength of each 

batch, but having more initial data would 

provide us with more precise estimates of the 

underlying parameters. In addition, we could 

have data in many more groups. This would 

allow us to test if there is a relationship between  

the strength and the batch using a hierarchical 

model to incorporate the batch effect. 

A final limitation worth noting, and thus a 

potential improvement, would be to gather data 

on strength through more varied methods. 

Tensile tests are the go-to standard, but 3-point 

bending and compressive testing would also 

yield informative values for the strength of the 

PLA. The varied methods of testing data could 

offset any noise due to link design and printer 

error. 

 

Conclusion 

This project demonstrates that FDM-formed 

PLA parts suffer from a distribution of strengths 

that varies from batch to batch and provides a 

guide on how to address this with a Bayesian 

model. We determined that each batch of PLA 

has a unique distribution of strengths. Using the 

strongest batch, we calculated useful strength 

values at the 90%, 95%, 99%, and 99.99% 

certainty levels. These values were 2.19 kN, 

2.09 kN, 1.86 kN, and 1.38 kN, respectively.

  



Appendix – Code 

 

# to find a, b hyperparameters for the prior distribution on alpha 
f <- function(params) { 
  alpha <- params[1] 
  beta <- params[2] 

   
(pweibull(3, shape = alpha, scale = beta) - pweibull(1.62, shape = alpha, scale 
  = beta) - .99)^2 
   + (pweibull(1.62, shape = alpha, scale = beta) - .005)^2 

   
} 

 
# optim(c(1,1),f) 
# optim(c(2.740281,11.194368),f) 
optim(c(2.720831,11.345502),f)[1] 

$par 
[1]  2.720831 11.345502 

Stan Model and Analysis 

Link Model under the Null Hypothesis 

data { 
  int<lower = 0> N; 
  real<lower = 0> y[N]; 
} 

 
parameters { 
  real alpha; 
  real beta; 
} 

 
model { 
  alpha ~ weibull(2.720831,11.345502); 
  beta ~ gamma(.001, 1); 

 
  for (i in 1:N) { 
    y[i] ~ weibull(alpha, beta); 
  } 
} 

 
generated quantities { 
  real linkStrength; 

 
  linkStrength = weibull_rng(alpha, beta); 
} 



saveRDS(LinkMod0, "LinkMod0.rds") 

 
LinkMod0 <- readRDS('LinkMod0.rds') 

 
dataList.LinkMod0 <- list( 
  N = nrow(tensileData), 
  y = tensileData$Strength.kN 
) 

 
fit.LinkMod0 <- stan(model_code = LinkMod0@model_code, 
                  data = dataList.LinkMod0, 
                  chains = 5, iter = 6000, warmup = 2000, 
                  control = list(adapt_delta = 0.98)) 

 

 
fit.LinkMod0 
LinkMod0.df <- stan_to_df(fit.LinkMod0) 

 
# save df for future reference 
write.csv(LinkMod0.df,  
"C:/Users/genericStudent/OneDrive - genericCollege/genericFolderSpace /LinkMod0.csv", 
          row.names=TRUE) 

 

Summary 

Link Model under the Alternate Hypothesis 

data { 
  int<lower = 0> N; 
  int<lower = 1, upper = 2> color[N]; // 1 is white, 2 is gray 
  real<lower = 0> y[N]; 
} 

 
parameters { 
  real alpha[2]; 
  real beta[2]; 
} 



 
model { 
  alpha ~ weibull(2.720831,11.345502); 
  beta ~ gamma(.001, 1); 

 
  for (i in 1:N) { 
    y[i] ~ weibull(alpha[color[i]], beta[color[i]]); 
  } 
} 

 
generated quantities { 
  real grayLinkStrength; 
  real whiteLinkStrength; 

 
  whiteLinkStrength = weibull_rng(alpha[1], beta[1]); 
  grayLinkStrength = weibull_rng(alpha[2], beta[2]); 
} 

saveRDS(LinkMod1, "LinkMod1.rds") 

 
LinkMod1 <- readRDS('LinkMod1.rds') 

 
dataList.LinkMod1 <- list( 
  N = nrow(tensileData), 
  color = tensileData$ColorCode, 
  y = tensileData$Strength.kN 
) 

 
fit.LinkMod1 <- stan(model_code = LinkMod1@model_code, 
                  data = dataList.LinkMod1, 
                  chains = 5, iter = 6000, warmup = 2000, 
                  control = list(adapt_delta = 0.98)) 

 

 
fit.LinkMod1 
LinkMod1.df <- stan_to_df(fit.LinkMod1) 

 
# save df for future reference 
write.csv(LinkMod1.df,  
"C:/Users/genericStudent/OneDrive - genericCollege/genericFileLocation/LinkMod1.csv", 
          row.names=TRUE) 



 

Summary 

Model Comparison 
evidence0 <- bridge_sampler(fit.LinkMod0)$logml 
evidence1 <- bridge_sampler(fit.LinkMod1)$logml 

logsumexp <- function(x1, x2) { 
  x1 + log(1 + exp(x2 - x1)) 
} 
 
lpr0 <- evidence0 - logsumexp(evidence0, evidence1)  
lpr1 <- evidence1 - logsumexp(evidence0, evidence1) 
 
c(exp(lpr0), exp(lpr1)) 

Output: [1] 0.0003159277 0.9996840723 

lowerBoundWhite <- quantile(LinkMod1$whiteLinkStrength, probs = c(0.0001, 0.01, 
  0.05, 0.10, 0.5)) 
lowerBoundGray <- quantile(LinkMod1$grayLinkStrength, probs = c(0.0001, 0.01, 
  0.05, 0.10, 0.5)) 

 
lowerBoundWhite 

    0.01%        1%        5%       10%       50%  
0.9512979 1.5029528 1.7387802 1.8461761 2.1520872  

lowerBoundGray 

   0.01%       1%       5%      10%      50%  
1.384119 1.864236 2.088411 2.192314 2.468109  


